Model tuning via grid search

tuning
SVMs
classification

Choose hyperparameters for a model by training on a grid of many possible parameter values.

Introduction

To use code in this article, you will need to install the following packages: kernlab, mlbench, and tidymodels.

This article demonstrates how to tune a model using grid search. Many models have hyperparameters that can’t be learned directly from a single data set when training the model. Instead, we can train many models in a grid of possible hyperparameter values and see which ones turn out best.

Example data

To demonstrate model tuning, we’ll use the Ionosphere data in the mlbench package:

library(tidymodels)
library(mlbench)
data(Ionosphere)

From ?Ionosphere:

This radar data was collected by a system in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power on the order of 6.4 kilowatts. See the paper for more details. The targets were free electrons in the ionosphere. “good” radar returns are those showing evidence of some type of structure in the ionosphere. “bad” returns are those that do not; their signals pass through the ionosphere.

Received signals were processed using an autocorrelation function whose arguments are the time of a pulse and the pulse number. There were 17 pulse numbers for the Goose Bay system. Instances in this databse are described by 2 attributes per pulse number, corresponding to the complex values returned by the function resulting from the complex electromagnetic signal. See cited below for more details.

There are 43 predictors and a factor outcome. Two of the predictors are factors (V1 and V2) and the rest are numeric variables that have been scaled to a range of -1 to 1. Note that the two factor predictors have sparse distributions:

table(Ionosphere$V1)
#> 
#>   0   1 
#>  38 313
table(Ionosphere$V2)
#> 
#>   0 
#> 351

There’s no point of putting V2 into any model since is is a zero-variance predictor. V1 is not but it could be if the resampling process ends up sampling all of the same value. Is this an issue? It might be since the standard R formula infrastructure fails when there is only a single observed value:

glm(Class ~ ., data = Ionosphere, family = binomial)

# Surprisingly, this doesn't help: 

glm(Class ~ . - V2, data = Ionosphere, family = binomial)

Let’s remove these two problematic variables:

Ionosphere <- Ionosphere %>% select(-V1, -V2)

Optional inputs

An optional step for model tuning is to specify which metrics should be computed using the out-of-sample predictions. For classification, the default is to calculate the log-likelihood statistic and overall accuracy. Instead of the defaults, the area under the ROC curve will be used. To do this, a yardstick package function can be used to create a metric set:

roc_vals <- metric_set(roc_auc)

If no grid or parameters are provided, a set of 10 hyperparameters are created using a space-filling design (via a Latin hypercube). A grid can be given in a data frame where the parameters are in columns and parameter combinations are in rows. Here, the default will be used.

Also, a control object can be passed that specifies different aspects of the search. Here, the verbose option is turned off and the option to save the out-of-sample predictions is turned on.

ctrl <- control_grid(verbose = FALSE, save_pred = TRUE)

Executing with a formula

First, we can use the formula interface:

set.seed(35)
formula_res <-
  svm_mod %>% 
  tune_grid(
    Class ~ .,
    resamples = iono_rs,
    metrics = roc_vals,
    control = ctrl
  )
formula_res
#> # Tuning results
#> # Bootstrap sampling 
#> # A tibble: 30 × 5
#>    splits            id          .metrics          .notes           .predictions
#>    <list>            <chr>       <list>            <list>           <list>      
#>  1 <split [351/120]> Bootstrap01 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  2 <split [351/130]> Bootstrap02 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  3 <split [351/137]> Bootstrap03 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  4 <split [351/141]> Bootstrap04 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  5 <split [351/131]> Bootstrap05 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  6 <split [351/131]> Bootstrap06 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  7 <split [351/127]> Bootstrap07 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  8 <split [351/123]> Bootstrap08 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  9 <split [351/131]> Bootstrap09 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#> 10 <split [351/117]> Bootstrap10 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#> # ℹ 20 more rows

The .metrics column contains tibbles of the performance metrics for each tuning parameter combination:

formula_res %>% 
  select(.metrics) %>% 
  slice(1) %>% 
  pull(1)
#> [[1]]
#> # A tibble: 10 × 6
#>         cost     rbf_sigma .metric .estimator .estimate .config              
#>        <dbl>         <dbl> <chr>   <chr>          <dbl> <chr>                
#>  1  0.000977 0.000000215   roc_auc binary         0.838 Preprocessor1_Model01
#>  2  0.00310  0.00599       roc_auc binary         0.942 Preprocessor1_Model02
#>  3  0.00984  0.0000000001  roc_auc binary         0.815 Preprocessor1_Model03
#>  4  0.0312   0.00000278    roc_auc binary         0.832 Preprocessor1_Model04
#>  5  0.0992   0.0774        roc_auc binary         0.968 Preprocessor1_Model05
#>  6  0.315    0.00000000129 roc_auc binary         0.830 Preprocessor1_Model06
#>  7  1        0.0000359     roc_auc binary         0.837 Preprocessor1_Model07
#>  8  3.17     1             roc_auc binary         0.974 Preprocessor1_Model08
#>  9 10.1      0.0000000167  roc_auc binary         0.832 Preprocessor1_Model09
#> 10 32        0.000464      roc_auc binary         0.861 Preprocessor1_Model10

To get the final resampling estimates, the collect_metrics() function can be used on the grid object:

estimates <- collect_metrics(formula_res)
estimates
#> # A tibble: 10 × 8
#>         cost     rbf_sigma .metric .estimator  mean     n std_err .config       
#>        <dbl>         <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>         
#>  1  0.000977 0.000000215   roc_auc binary     0.871    30 0.00516 Preprocessor1…
#>  2  0.00310  0.00599       roc_auc binary     0.959    30 0.00290 Preprocessor1…
#>  3  0.00984  0.0000000001  roc_auc binary     0.822    30 0.00718 Preprocessor1…
#>  4  0.0312   0.00000278    roc_auc binary     0.871    30 0.00531 Preprocessor1…
#>  5  0.0992   0.0774        roc_auc binary     0.970    30 0.00261 Preprocessor1…
#>  6  0.315    0.00000000129 roc_auc binary     0.857    30 0.00624 Preprocessor1…
#>  7  1        0.0000359     roc_auc binary     0.873    30 0.00533 Preprocessor1…
#>  8  3.17     1             roc_auc binary     0.971    30 0.00248 Preprocessor1…
#>  9 10.1      0.0000000167  roc_auc binary     0.871    30 0.00534 Preprocessor1…
#> 10 32        0.000464      roc_auc binary     0.927    30 0.00484 Preprocessor1…

The top combinations are:

show_best(formula_res, metric = "roc_auc")
#> # A tibble: 5 × 8
#>       cost rbf_sigma .metric .estimator  mean     n std_err .config             
#>      <dbl>     <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
#> 1  3.17    1         roc_auc binary     0.971    30 0.00248 Preprocessor1_Model…
#> 2  0.0992  0.0774    roc_auc binary     0.970    30 0.00261 Preprocessor1_Model…
#> 3  0.00310 0.00599   roc_auc binary     0.959    30 0.00290 Preprocessor1_Model…
#> 4 32       0.000464  roc_auc binary     0.927    30 0.00484 Preprocessor1_Model…
#> 5  1       0.0000359 roc_auc binary     0.873    30 0.00533 Preprocessor1_Model…

Executing with a recipe

Next, we can use the same syntax but pass a recipe in as the pre-processor argument:

set.seed(325)
recipe_res <-
  svm_mod %>% 
  tune_grid(
    iono_rec,
    resamples = iono_rs,
    metrics = roc_vals,
    control = ctrl
  )
recipe_res
#> # Tuning results
#> # Bootstrap sampling 
#> # A tibble: 30 × 5
#>    splits            id          .metrics          .notes           .predictions
#>    <list>            <chr>       <list>            <list>           <list>      
#>  1 <split [351/120]> Bootstrap01 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  2 <split [351/130]> Bootstrap02 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  3 <split [351/137]> Bootstrap03 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  4 <split [351/141]> Bootstrap04 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  5 <split [351/131]> Bootstrap05 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  6 <split [351/131]> Bootstrap06 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  7 <split [351/127]> Bootstrap07 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  8 <split [351/123]> Bootstrap08 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#>  9 <split [351/131]> Bootstrap09 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#> 10 <split [351/117]> Bootstrap10 <tibble [10 × 6]> <tibble [0 × 3]> <tibble>    
#> # ℹ 20 more rows

The best setting here is:

show_best(recipe_res, metric = "roc_auc")
#> # A tibble: 5 × 8
#>       cost rbf_sigma .metric .estimator  mean     n std_err .config             
#>      <dbl>     <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
#> 1  3.17    1         roc_auc binary     0.971    30 0.00248 Preprocessor1_Model…
#> 2  0.0992  0.0774    roc_auc binary     0.970    30 0.00261 Preprocessor1_Model…
#> 3  0.00310 0.00599   roc_auc binary     0.959    30 0.00290 Preprocessor1_Model…
#> 4 32       0.000464  roc_auc binary     0.927    30 0.00484 Preprocessor1_Model…
#> 5  1       0.0000359 roc_auc binary     0.873    30 0.00533 Preprocessor1_Model…

Out-of-sample predictions

If we used save_pred = TRUE to keep the out-of-sample predictions for each resample during tuning, we can obtain those predictions, along with the tuning parameters and resample identifier, using collect_predictions():

collect_predictions(recipe_res)
#> # A tibble: 38,740 × 8
#>    .pred_bad .pred_good id           .row     cost   rbf_sigma Class .config    
#>        <dbl>      <dbl> <chr>       <int>    <dbl>       <dbl> <fct> <chr>      
#>  1     0.333      0.667 Bootstrap01     1 0.000977 0.000000215 good  Preprocess…
#>  2     0.333      0.667 Bootstrap01     9 0.000977 0.000000215 good  Preprocess…
#>  3     0.333      0.667 Bootstrap01    10 0.000977 0.000000215 bad   Preprocess…
#>  4     0.333      0.667 Bootstrap01    12 0.000977 0.000000215 bad   Preprocess…
#>  5     0.333      0.667 Bootstrap01    14 0.000977 0.000000215 bad   Preprocess…
#>  6     0.333      0.667 Bootstrap01    15 0.000977 0.000000215 good  Preprocess…
#>  7     0.333      0.667 Bootstrap01    16 0.000977 0.000000215 bad   Preprocess…
#>  8     0.333      0.667 Bootstrap01    22 0.000977 0.000000215 bad   Preprocess…
#>  9     0.333      0.667 Bootstrap01    23 0.000977 0.000000215 good  Preprocess…
#> 10     0.333      0.667 Bootstrap01    24 0.000977 0.000000215 bad   Preprocess…
#> # ℹ 38,730 more rows

We can obtain the hold-out sets for all the resamples augmented with the predictions using augment(), which provides opportunities for flexible visualization of model results:

augment(recipe_res) %>%
  ggplot(aes(V3, .pred_good, color = Class)) +
  geom_point(show.legend = FALSE) +
  facet_wrap(~Class)

Session information

#> ─ Session info ─────────────────────────────────────────────────────
#>  version  R version 4.4.2 (2024-10-31)
#>  language (EN)
#>  date     2025-03-24
#>  pandoc   3.6.1
#>  quarto   1.6.42
#> 
#> ─ Packages ─────────────────────────────────────────────────────────
#>  package      version date (UTC) source
#>  broom        1.0.7   2024-09-26 CRAN (R 4.4.1)
#>  dials        1.4.0   2025-02-13 CRAN (R 4.4.2)
#>  dplyr        1.1.4   2023-11-17 CRAN (R 4.4.0)
#>  ggplot2      3.5.1   2024-04-23 CRAN (R 4.4.0)
#>  infer        1.0.7   2024-03-25 CRAN (R 4.4.0)
#>  kernlab      0.9-33  2024-08-13 CRAN (R 4.4.0)
#>  mlbench      2.1-6   2024-12-30 CRAN (R 4.4.1)
#>  parsnip      1.3.1   2025-03-12 CRAN (R 4.4.1)
#>  purrr        1.0.4   2025-02-05 CRAN (R 4.4.1)
#>  recipes      1.2.0   2025-03-17 CRAN (R 4.4.1)
#>  rlang        1.1.5   2025-01-17 CRAN (R 4.4.2)
#>  rsample      1.2.1   2024-03-25 CRAN (R 4.4.0)
#>  tibble       3.2.1   2023-03-20 CRAN (R 4.4.0)
#>  tidymodels   1.3.0   2025-02-21 CRAN (R 4.4.1)
#>  tune         1.3.0   2025-02-21 CRAN (R 4.4.1)
#>  workflows    1.2.0   2025-02-19 CRAN (R 4.4.1)
#>  yardstick    1.3.2   2025-01-22 CRAN (R 4.4.1)
#> 
#> ────────────────────────────────────────────────────────────────────
Resources
Explore searchable tables of all tidymodels packages and functions.
Study up on statistics and modeling with our comprehensive books.
Hear the latest about tidymodels packages at the tidyverse blog.